Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

На правах рукописи

Hauor

Малай Василий Игоревич

Новые ароматические и гетероциклические структуры на основе реакций 3,5-ди-(*трет*-бутил)-о-бензохинона и его 6-нитропроизводного с арил- и алкиламинами

1.4.3. – органическая химия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Ростов-на-Дону – 2023

Работа выполнена в Научно-исследовательском институте физической и органической химии Федерального государственного бюджетного учреждения высшего образования «Южном федеральном университете»

Научный руководитель: Ивахненко Евгений Петрович

доктор химических наук, профессор, главный научный сотрудник отдела строения и реакционной способности органических соединений НИИ ФОХ ЮФУ (г. Ростов-на-Дону)

Официальные оппоненты:

Доценко Виктор Викторович

доктор химических наук, доцент, заведующий кафедрой органической химии и технологий Федерального государственного бюджетного образовательного учреждения высшего образования «Кубанский государственный университет» (г. Краснодар)

Шепеленко Евгений Николаевич

кандидат химических наук, старший научный сотрудник лаборатории физической органической химии, Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр Южный научный центр Российской академии наук» (г. Ростов-на-Дону)

Защита диссертации состоится «12» октября 2023 года в 14:00 на заседании диссертационного совета при Южном федеральном университете по адресу: 344090, г. Ростов-на-Дону, пр. Стачки, 194/2, ЮФУ НИИ ФОХ, конференц-зал.

С диссертацией можно ознакомиться в Зональной научной библиотеке Южного федерального университета по адресу: г. Ростов-на-Дону, ул. Зорге, д. 21-Ж, 2 этаж и на сайте https://hub.sfedu.ru/diss/show/1317077/

Отзыв (в нем укажите дату, а также полностью свои фамилию, имя, отчество, учёную степень со специальностью, звание, организацию, подразделение, должность, адрес, телефон, email) с заверенной подписью рецензента и печатью учреждения просим направлять простым письмом в 2 экз. учёному секретарю диссертационного совета ЮФУ801.01.03 при ЮФУ по адресу: 344006 г. Ростов-на-Дону, ул. Большая Садовая, д. 105/42, НИИ физической и органической химии ЮФУ, д.х.н., Душенко Галине Анатольевне (а также в формате .pdf – на e-mail: gadushenko@sfedu.ru).

Автореферат разослан « <u>»</u>	_2023 г.
Ученый секретарь	
диссертационного совета ЮФУ801.01.03,	
доктор химических наук	

Душенко Г.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования.

Реакции орто-хинонов с аммиаком, алкил- и арил-аминами охватывают широкий спектр интенсивно изучаемых областей химии реакционноспособных промежуточных соединений, используемых для легкой и селективной биофункционализации белков, синтеза пяти- и шестичленных N, О-гетероциклов, о-аминофенолов и редокс-активных лигандов термически светопереключаемых координационных соединений переходных металлов. Детальные механизмы и результаты этих реакций, особенно протекающих в окислительных условиях, чрезвычайно чувствительны к структурным особенностям участвующих соединений и условиям реакции. Ранее было показано, что реакцией между 4-метилкатехолом (предшественником соответствующего о-хинона) и пропиламином в аэробных, окислительных и кислых условиях получили 60 продуктов, большинство из которых являются производными 1,6-сопряженного присоединения, конденсации основания Шиффа и сочетания 4-метилкатехола, которые образуются в реакционной смеси в течение 6 мин.

Цель и задачи диссертационной работы:

- Установление влияния нитрогруппы на механизм реакции экранированного 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с первичными, вторичными, алифатическими аминами и анилинами;
- Синтез и идентификация строения продуктов реакции 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с первичными алкил- и ариламинами образующихся при 1,2-сдвиге *трет*-бутильных групп с образованием производных 3,4-ди-(*трет*-бутил)-5-арил(алкил)амино)-2-гидрокси-6-нитроциклогекса-2,5-диен-1-она;
- Синтез и установление строения производных новой гетероциклической системы 1H-циклопента[b]пиридин-4,5-диона в реакции 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с ариламинами и ацетоном

- Изучение реакции 3,5-ди(*трет*-бутил)-1,2-бензохинона с о-фенилендиамином в зависимости от растворителя и соотношения регентов.
- Установление строения и изучение спектроскопических свойств полученной новой гетероциклической системы 10H-хиноксалино[3,2,1-kl]феноксазин-10-она

Объекты и предмет исследования:

- 3,5-Ди-(*тет*-бутил)-6-нитро-1,2-бензохинон, его реакции с первичными, вторичными, алифатическими аминами и анилинами.
- 3,5-Ди(*тет*-бутил)-1,2-бензохинон, его реакции с о-фенилендиаминами в зависимости от растворителя, соотношения регентов;
- Выявление особенностей протекания таких реакций в зависимости от строения нуклеофильного агента (аммиак, амины, о-фенилендиамины), определение строения и свойств образующихся соединений;

<u>Методы исследования.</u> ИК-, ЯМР-, ЭПР-, УФ-, масс-спектроскопия, элементный и рентгеноструктурный анализа.

Научная новизна и практическая значимость работы заключается в следующем:

- Показано, что стерически заблокированный путь присоединения по типу Михаэля реакции 3,5-ди-(*трет*-бутил)-1,2-бензохинона с N-нуклеофилами может быть активирован путем повышения электрофильности хинона;
- Установлено, что взаимодействие 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с аммиаком и аминами протекает с 1,2-сдвигом трет-бутильной группы и приводит к образованию 2-гидрокси-2,5-диенонов и 3,5-диен-1,2-дионов;
- Разработана методика синтеза ранее неизвестных 6-(*mpem*-бутил)-4-(ариламино)-3-нитроциклогекса-3,5-диен-1,2-дионов;
- Найдено, что взаимодействие 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с вторичными алифатическими аминами приводит к сужению цикла хинона по ANRORC механизму.

- Взаимодействием 6-(*трет*-бутил)-4-(ариламино)-3-нитроциклогекса-3,5-диен-1,2-дионов с ацетоном получены ранее неизвестные 4,5-диоксопроизводные 1H-циклопента[b]пиридинов;
- Предложен простой, однореакторный метод трехкомпонентного синтеза этих дионов путем взаимодействия 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с анилином и ацетоном.
- Установлено, что взаимодействие 3,5-ди(*mpem*-бутил)-1,2-бензохинона с офенилендиаминами приводит к образованию широкого спектра продуктов, в зависимости от строения о-фенилендиамина, соотношения реагентов и выбранного растворителя;
- Разработана методика синтеза производных 10H-хиноксалино[3,2,1kl]феноксазин-10-она;
- Установлено, что 10H-хиноксалино[3,2,1-kl]феноксазин-10-оны проявляют окислительные свойства, а в их электронных спектрах поглощения проявляются широкие полосы поглощения в диапазоне 500-850 нм, что перспективно для фотоэлектрических применений;
- Было выяснено, что 12H-хиноксалино[3,2,1-kl]феноксазин-12-он, содержащий сопряженные вицинальные гидроксильные и карбонильные группы, является удобным лигандом для построения комплексов переходных металлов;

На защиту выносятся следующие основные результаты:

— Присутствие нитрогруппы в 6 положении молекулы 3,5-ди-(*трет*-бутил)-1,2-бензохинона приводит к резкому увеличению положительного заряда, в соседнем положении 5, что обеспечивает возможность присоединения аминов по этому положению по Михаэлю с последующим 1,2 сдвигом *трет*-бутильной группы. Взаимодействие 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона со вторичными алифатическими аминами параллельно приводит к сужению цикла по ANRORC механизму.

- Оказалось, что взаимодействие 6-(*трет*-бутил)-4-(ариламино)-3нитроциклогекса-3,5-диен-1,2-дионов с ацетоном приводит к образованию 1Нциклопента[b]пиридин-4,5-дионов;
- Взаимодействие 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с анилинами и ацетоном приводит к образованию 1H-циклопента[b] пиридин-4,5-диона;
- Взаимодействие 3,5-ди(*трет*-бутил)-1,2-бензохинона с о-фенилендиаминами приводит к образованию широкого спектра продуктов, в зависимости от строения офенилендиамина, соотношения реагентов и выбранного растворителя;
- Разработана методика синтеза производных 10H-хиноксалино[3,2,1kl]феноксазин-10-она;
- Изучены редокс-активность и электронные спектры поглощения 10H-хиноксалино[3,2,1-kl]феноксазин-10-онов для фотоэлектрических применений;
- 12H-Хиноксалино[3,2,1-k1]феноксазин-12-он, содержащий сопряженные вицинальные гидроксильные и карбонильные группы, является удобным лигандом для построения бис-комплексов переходных металлов;

Структура диссертации. Диссертационная работа изложена на 141 странице, состоит из введения, трех глав и выводов, содержит 25 рисунков и 7 таблиц. Список цитируемой литературы включает 157 наименований. В главе 1 рассмотрены имеющиеся в литературе сведения о реакционной способности хинонов, механизмах и продуктах нуклеофильных реакций хинонов. Глава 2 содержит обсуждение полученных результатов по исследованию взаимодействия 3,5-ди(*трет*-бутил)-1,2-бензохинона с о-фенилендиаминами и 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с аммиаком, с первичными, вторичными, алифатическими аминами и анилинами, а также изучению продуктов реакций. В главе 3 приводится описание методик проведения экспериментов.

<u>Личный вклад соискателя</u> заключается в определении задач исследования, проведении лабораторного эксперимента, анализе и интерпретации полученных спектральных данных, апробации и подготовке к публикации результатов работы.

Апробация работы. Основные результаты диссертационной работы докладывались на XIX Международной конференции: Спектроскопия координационных соединений (Туапсе, 2022г.), VI Всероссийской научно-практической конференции студентов и молодых ученых Химия: достижения и перспективы (Ростов-на-Дону, 2021г.), VII Всероссийской научно-практической конференции студентов и молодых ученых, посвященной памяти д.х.н. В.В. Лукова. Химия: достижения и перспективы (Ростовна-Дону, 2022г.).

Публикации. По материалам диссертации опубликовано 3 статьи и 5 тезисов докладов. Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект № 075-15-2020-779 «Фундаментальные основы спиновых технологий и направленного конструирования «умных» полифункциональных материалов для спинтроники и молекулярной электроники»).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Реакция 3,5-ди-(трет-бутил)-6-нитро-1,2-бензохинона с первичными аминами 1.1. Нуклеофильное присоединение амина с 1,2 сдвигом *трет*-бутильной группы Наличие нитрогруппы в 6 положении молекулы 3,5-ди-(трет-бутил)-1,2-бензохинона оказывает значительное влияние на ее реакционную способность, что находит свое реакциях такого нитрохинона, соединения 1, с аммиаком, алкил- и отражение в кратковременное ариламинами. Установлено, что кипячение изопропанольных растворов эквимолярных количеств 1 и аминов, а также аммиака, использованного в форме его 25%-ного водного раствора, приводит к образованию зеленых твердых веществ, которые, судя по результатам их исследований методами ЯМР 1 Н и 13 С, ИК– и масс-спектроскопии высокого разрешения, а также рентгеноструктурного анализа, имеют структуры, отвечающие 1,2-миграции трет-бутильной группы, а именно, производных 4-амино-5,6-ди-(трет-бутил)-3-нитроциклогекс-3-ен-1,2-диона. Так, при реакции хинона 1 с алкиламинами в кипящем изопропаноле образуются по два

изомерных продукта — производных 2-гидрокси-2,5-диенона(**2**) и 3,5-диен-1,2-дион (**3**), что в общем виде представлено на схеме 1.

t-Bu
$$+$$
 RNH₂ $+$ RNH₂ $+$ RHN $+$ CO $+$ RHN

Схема 1

Полученные продукты представляют собой кристаллические соединения и были выделены в индивидуальном состоянии и охарактеризованы физико-химическими методами. Конкретные их представители, структуры **4-16** показаны ниже:

Кристаллы соединений **8, 14**, выделяющиеся в гидроксильной форме со стереогенным центром, существуют в виде конгломератов (смесей эквимолярного количества двух гомохиральных кристаллов) и, являются редким для несолевых

структур случаем спонтанного разделения энантиомеров, с возможностью ручного разделения кристаллов двух энантиомерных форм.

В тех же условиях с ариламинами нитрохинон **1**, количественно дает лишь один из двух возможных изомеров, со общей структурой производных 2-гидрокси-2,5-диенона **2** (Схема 2), с полученными конкретными представителями этих продуктов, соединениями **17-22**.

Схема 2 — Синтез 3,4-ди(*трет*-бутил)-2-гидрокси-6-нитро-5-(ариламино)циклогекса-2,5-диенона **2**.

Структура соединений **17-22** подтверждена данными ЯМР ¹Н и ¹³С, массспектроскопии высокого разрешения и рентгеноструктурного анализа.

Механизм двухстадийного превращения, приводящего к 3-нитроциклогекс-3-ен-1,2-дионам **2**, представлен на схеме 3, которая подчеркивает особую роль катионного (электронодефицитного) центра C4 в исходно образованном аддукте **1a**².

Данный механизм подкреплен локализацией переходных состояний **TS1-TS3**, характеризующих происходящие в системе $1 - NH_3$ трансформации, в частности, процесс миграции *трет*-бутильной группы (Схема 4).

Схема 3 — Вероятный двухстадийный механизм синтеза 4-амино-5,6-ди-(*трем*-бутил)-3-нитроциклогекс-3-ен-1,2-дионов **3**.

Схема 4 – Детальное представление механизма реакции нитрохинона 1 с аммиаком.

1.2. Образование 3-(*трет*-бутил)-5-ариламино-6-нитроциклогекса-2,5-диен-1,2-дионов

В случаях взаимодействия ариламинов с 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохиноном **1** продукты реакции содержали следовые количества **3**-(*трет*-бутил)-5-ариламино-6-нитроциклогекса-2,5-диен-1,2-дионов **23**, образующихся из **2** за счет миграции *трет*-бутильной группы в карбонильную группу хинона **1**. Хотя

нерадикальные реакции О-алкилирования^{1,2} нетипичны для хинонов, в литературе электрофильного примеры описаны отдельные алкилирования. Поэтому предположили, что ОНЖОМ было бы перенаправить реакцию нитроаминохинонов 23 путем удвоения первоначально внесенных эквимолярных количеств нитрохинона 1 и действительно обнаружили, что длительное нагревание изопропанольного раствора смеси производных с арильным заместителем при атоме азота 2 и о-бензохинона 1 обеспечивает образование 25-28 с хорошими выходами (Схема 5).

Схема 5

Структуры соединений **25-30** подтверждены данными данными ЯМР 1 Н и 13 С, масс-спектроскопии высокого разрешения и рентгеноструктурного анализа для **26** (R = m-Cl).

 $^{^1}$ Xu, X. L. Catalytic electrophilic alkylation of p-quinones through a redox chain reaction / X. L. Xu, Z. Li // Angewandte Chemie International Edition. -2017. -T. 56. -№. 28. -C. 8196-8200.

² Sayapin, Y. A. Synthesis and structure of 3-(tert-butyl)-10,10-dimethyl-10H-indolo[1,2-a]indoline-1,4-dione / Y. A. Sayapin, I. O. Tupaeva, E. A. Gusakov, G. V. Shilov, V. V. Tkachev, S. M. Aldoshin, V. I. Minkin // Doklady Chemistry. − 2015. − T. 460. − №. 33–36.

1.3. Реакция 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с вторичными алифатическими аминами

При взаимодействии эквимолярных количеств 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона 1 с вторичными аминами в изопропаноле образуется сложная смесь продуктов трех типов **31-36** (Схема 6). Изменение условий проведения синтеза (температуры и времени реакции) не приводит к существенному изменению состава и выходов ее продуктов. Что интересно, в этой реакции образуются и продукты сужения цикла хинона до пятичленного **39, 40**.

Схема 6

Строение соединений **31-35** было установлено методами ЯМР ¹Н и ¹³С, массспектроскопии высокого разрешения и рентгеноструктурного анализа для соединений **31-32** и **34-35**.

При использовании трехкратного избытка морфолина реакция протекала с восстановлением нитро-*о*-хинона и образованием морфолин-4-иум 3,5-ди-*трет*-бутил-2-гидрокси-6-нитрофенолата **42**, соединения представляющего собой оранжевые кристаллы ромбической формы, устойчивые в обычных условиях, нерастворимые в холодной воде. (Схема 7).

Схема 7

Предполагается, что механизм образования соединений **31-33** аналогичен описанному выше механизму для реакции 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с первичными аминами (Схема 4). В случае образования производных циклопента-1,3-диена **34**, **35**, реакция протекает по механизму ANRORC с раскрытием шестичленного кольца хинона по связи O=C-C=O и замыкание пятичленного карбоцикла вследствие нуклеофильной атаки, схема 8

Схема 8

2. Реакция 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с первичными ароматическими аминами и ацетоном

Предполагалось, **25-30** быть что полученные нитроаминохиноны ΜΟΓΥΤ подходящих исходных веществ для синтеза новых использованы в качестве гетероциклических условии правильной функционализации систем, при ариламинофрагментов, позволяющей обеспечить возможность циклизаций. Для этого могут подойти реакции хинонов с метилен-активными соединениями, направленные на аминогруппу или центр C(4). С учетом этого была исследована реакция хинонов **25-30** с ацетоном (взятым примерно в 20-кратном избытке) и обнаружили, что выдерживание изопропанольного раствора компонентов при температуре кипения в течение 2-8 часов приводит к образованию производных новой 1H-циклопента[b]пиридин-4,5-дионовой гетероциклической системы **38** (Схема 9).

t-Bu
$$HN \longrightarrow O \qquad + \qquad H_3C$$

$$R \longrightarrow H_$$

Схема 9 – Синтез 6-(*трет*-бутил)-2-метил-1-арил-1Н-циклопента[b]пиридин-4,5-дионов **38**.

Так как реакции, описанные на схемах 9 и 10, протекают в сходных условиях, их оказалось возможным объединить в рамках одного общего однореакторного процесса, что весьма удобно для получения 1H-циклопента[b]пиридин-4,5-дионов **51**, такой процесс реализуется при взаимодействии двух эквивалентов хинона **1**, с ариламинами в системе изопропанол/ацетон (1:1) (Схема 10). Разнообразие аминов и широкие возможности реакции демонстрирует перечень полученных с ее помощью 1H-циклопента[b]пиридин-4,5-дионов **39-55**.

Схема 10 — Синтез 1H-циклопента[b]пиридин-4,5-дионов **38** из нитрохинона **1** в режиме one-pot.

Строение соединений **39-55** как производных системы 3,4-ди-(*трет*-бутил)-5-ариламино)-2-гидрокси-6-нитроциклогекса-2,5-диен-1-она установлено методами ЯМР ¹H и ¹³C, масс-спектроскопии высокого разрешения и рентгеноструктурного анализа для дионов **40**, **41**, **54**.

Использование дйтероацетона в качестве реагента позволяет получать меченые соединения типа **38** с дейтерием в положении 3 и в 4-Ме группе молекул, что демонстрирует характер структурных фрагментов ацетона, встраиваемых в 1H-циклопента[б]пиридин-4,5-дионы.

Объяснение многостадийных превращений, приводящих к производным 1Н-циклопента[b]пиридин-4,5-дионовой системе, представлено на схеме 11 и рисунке 2.

Схема 11 — Вероятный механизм синтеза 6-(*трет*-бутил)-2-метил-1-арил-1Н-циклопента[b]пиридин-4,5-дионов типа **38** в реакции хинонов **23** с ацетоном на примере соединения **39**. Стадия $\mathbf{d} \rightarrow \mathbf{39}$ видимо имеет сложный характер, т.к. идет с разрывом двух [C(1)-C(2) и C(3)-C(4)] и образованием тоже двух связей C(1)-C(3) и C(2)-C(4).

Благодаря наличию в их молекулах 4-пиридонового фрагмента соединения **38** проявляют ярко выраженную способность к образованию устойчивых H-комплексов с донорами водородных связей. Примером этой тенденции является своеобразное строение аддукта **56**, выделенного как побочный продукт реакции хинона **1** с о-йоданилином и ацетоном.В перспективе, дионы **38** могут служить неенолизируемыми бидентатными лигандами для образования бис-хелатных комплексов переходных металлов и лантанидов. Большое расстояние (3,213 Å) между донорными карбонильными кислородными центрами оставляет простор для координации **38** с объемными ионами металлов с образованием устойчивых комплексов **57**, как показали расчеты.

Схема 12 – Структура Н-комплекса 56 и комплекса 57.

3. Реакция 3,5-ди-(трет-бутил)-1,2-бензохинона с о-фенилендиаминами

Реакция 3,5-ди(трет-бутил)-1,2-бензохинона с о-фенилендиаминами изученная в аэробных **УСЛОВИЯХ**, допускающих окисление образующихся промежуточных продуктов воздухом, в двух типах растворителей и при варьировании температурных режимов приводит к образованию производного новой полициклической системы 10Нхиноксалино[3,2,1-k1]феноксазин-10-она 59, по схеме 13. Заключительные стадии реакции Михаэля промежуточного включают присоединение ПО типу гетероциклического имина к менее экранированному углеродному центру хинона 58. Структура соединения 59, содержащего два конденсированных трициклических каркаса феноксазина и феназина, подтверждена данными ЯМР ¹H, ¹³C, массспектрометрии и РСА.

Каркас пентациклической молекулы **59** неплоский из-за стерических затруднений, создаваемых четырьмя *тет*-бутильными группами. Его цикл N1-C1-C6-O1-C14-C13 загнут вдоль оси N1-O1 под углом 38,17°. Этот изгиб не является следствием кристаллической упаковки, а является присущей молекуле особенностью.

$$t$$
-Bu t -Bu

ма 13. Синтез 2,4,11,13-тетра-*трет*-бутил-10H-хиноксалино[3,2,1-kl]феноксазин-10-она **59**

Реакция хинона **58** с о-фенилендиамином легко протекает и в неполярном толуоле, но с образованием 2-(13-амино-2,4-ди-*mpem*-бутил-12H-хиноксалино[2,3-b]феноксазина-12-ил)-4,6-ди-*mpem*-бутилфенола **60** в качестве основного продукта.

Схема 14. Взаимодействие 3,5-ди(*трет*-бутил)-1,2-бензохинона с о-фенилендиамином в растворе толуола.

Зависимость реакций о-хинонов с аминами от строения последних проявляется в результатах взаимодействия хинона **58** с 4-карбэтокси-1,2-фенилендиамином, проведенным в тех же условиях, поскольку в этом случае основным продуктом опять становится производное 10H-хиноксалино[3,2,1-kl]феноксазин-10-она, а именно, соединение **61**. (схема 15). В качестве второго продукта образуется известный ³ 1H-феноксазин-1-он **62**, выделенный из реакционной смеси с выходом 30%.

Схема 15. Взаимодействие 3,5-ди(*трет*-бутил)-1,2-бензохинона **58** и этил 3,4-диаминобензоата в растворе толуола.

На направление реакции сильно влияет и соотношение реагентов. Действительно, при взаимодействии двойного избытка хинона **58**, реакция в толуоле приводит не к хиноксалинофеноксазину **60**, а уже к 10-членному макрогетероциклическому соединению, 2,4,7,9-тетра-(*mpem*-бутил)-6H-бензо[b]бензо[4,5]имидазо[1,2-d][1,4]оксазецин-6-одина **63** (схема 16). Его структура установлена методом рентгеноструктурного анализа.

³ Stegmann, H. B. ESR-Untersuchungen einer Modell-Phenoxazinsynthese / H. B. Stegmann, , K. Scheffler, F. Stöcker, H. Bürk, //Chemische Berichte. − 1968. − T. 101. − № 1. − C. 262-271.

Схема 16. Синтез 2,4,7,9-тетра-(mpem-бутил)-6H-бензо[b]бензо[4,5]имидазо[1,2-d][1,4]оксазецин-6-она ${\bf 63}$.

Предполагалось, дополнительная функционализация что диаминового компонента реакций, представленных на схемах 14 и 15, может привести к получению новых интересных структур. По этой причине По этой причине для реакции с хиноном использован 4-((2-аминофенил)имино)-2,6-ди(трет-бутил)циклогекса-2,5-**58** диенон 64, получаемое из него путем конденсации с 2,6-ди(трет-бутил)-п-хиноном⁴. Как было найдено, его реакция с хиноном 58 легко протекает в присутствии ПТСК количеств каталитических И лает еше ОДНО производное хиноксалино[3,2,1-kl]феноксазина, но уже с п-типом хинониминового фрагмента, иминовый атом которого включен в состав пиразинового цикла (схема 17). Строение соединения **65** тоже установлено методом рентгеноструктурного анализа. Препаративное окисление этого соединения действием PbO₂ в толуоле приводит к образованию стабильного радикала, видимо, феноксильного типа, зарегистрированного методом ЭПР.

⁴ Komissarov, V. N. Synthesis of 1-(3, 5-di-tert-butyl-4-hydroxyphenyl)-2-r-benzimidazoles / V. N. Komissarov // Chemistry of Heterocyclic Compounds. -1990. -T. 26. -№. 4. -C. 414-416.

Схема 17. Синтез 2,4,11-три-*трет*-бутил-3-гидрокси-12H-хиноксалино[3,2,1-kl]феноксазин-12-она **65**.

Ранее окислительных реакций аминов, при изучении ароматических катализируемых протонными кислотами, было обнаружено, что поведение N-фенил-офенилендиамина существенно отличается от поведения незамещенного диамина⁵. Поэтому была изучена и реакция N-фенил-о-фенилендиамина с 3,5-ди(трет-бутил)-1,2-бензохиноном в растворе изопропанола в условиях, аналогичных тем, которые применялись для реакций с самим о-фенилендиамином (схемы 14 и 15). Было установлено, что такая реакция приводит к образованию четырех основных продуктов в соотношении, слабо зависящем от продолжительности реакции (схема 18). Один из соединение **66** (схема 18), является производным 12Н-хиноксалино[2,3-Ыфеноксазина;⁶ два других − это феназины **68** и **69**, аналогичные продуктам, образующимся при окислении ароматических фенилендиаминов воздухом. Амины, как предполагалось³, образуют множественные связи С-N. Появление фрагмента >СМе₂ в 69 является результатом вовлечения растворителя в ход окислительной реакции. Загадочным представляется наличие среди продуктов В качестве соединения спироциклического производного 67, строение которого тоже установлено рентгеноструктурного Механизм реакции образования 67 анализа. определенно включает в себя участие в реакции двух молекул хинона 58.

⁵ Roy, S. K. Aerial oxidation of protonated aromatic amines. Isolation, x-ray structure, and redox and spectral characteristics of N-containing dyes / S. K. Roy, S. Samanta, M. Sinan, P. Ghosh, S. Goswami, // The Journal of Organic Chemistry. − 2012. − T. 77. − №. 22. − C. 10249-10259.

⁶ Ivakhnenko, E. P. Reaction of 3, 5-di-(tert-butyl)-o-benzoquinone with arylamines developing to the formation of a pentaheterocyclic 12H-quinoxaline [2, 3-b] phenoxazine system. A deeper insight into the reaction mechanism / E. P. Ivakhnenko, G. V. Romanenko, A. A. Kovalenko, Y. V. Revinskii, P. A. Knyazev, V. A., Kuzmin, V. I. Minkin, // Dyes and Pigments. – 2018. – T. 150. – C. 97-104.

Схема 18. Основные продукты реакции о-хинона **58** и N-фенил-о-фенилендиамина, взятых в соотношении 1:2.

Спектрально-люминесцентные свойства соединений **59**, **61**, **65** и **66** исследованы методами УФ/видимой и фотолюминесцентной спектроскопии в растворе толуола при комнатной температуре. Соединения **59** и **61** обладают широкой полосой поглощения в диапазоне 600-850 нм, а **66** имеет более интенсивную широкую полосу в области 500-750 нм с λ_{max} =633 нм. Введение 4-этоксикарбонильной группы в каркас соединения **61** приводит к батохромному сдвигу наиболее длинноволновой полосы поглощения на 19 нм. Для соединений **59**, **61** и90 **65** флуоресценция не обнаружена. В то же время соединение **66**, структурный аналог изученных ранее⁵ 12H-хиноксалино[2,3-b]феноксазинов, проявляет интенсивную флуоресценцию (λ_{ex} = 540 nm) с квантовым выходом Φ_{fl} =0.43.

Электронные спектры поглощения соединений **59, 61, 65** имеют широкие длинноволновые полосы поглощения в диапазоне 500 – 850 нм, охватывающие наиболее сильную эмиссионную часть солнечного спектра, как того требуют соединения с потенциалом красителей-сенсибилизаторов солнечных элементов типа Гретцеля^{7,8} тогда как **60**, содержащий сопряженные вицинальные гидроксильные и карбонильные группы, является многообещающим лигандом для построения новых

⁷ Kalyanasundaram K. Dye-sensitized solar cells. – CRC press, 2010.

⁸ Yahya, M. Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions / M. Yahya, A. Bouziani, C. Ocak, Z. Seferoğlu, // Dyes and Pigments. – 2021. – T. 192. – C. 109227.

комплексов переходных металлов. Структура **70,** установленная с помощью РСА, свидетельствует о том, что образованию координационного центра предшествует миграция ди(*трет*-бутил)гидроксифенильной группы между двумя соседними азотными центрами.

Схема 19. Синтез пентакоординированного бис-хелатного комплекса Cu(II) **70** с 12H-хиноксалино[3,2,1-kl]феноксазин-12-оном **60** и гексафторацетилацетатом меди.

Заключение

В представленной работе было синтезировано *55* новых соединений, строение которых (наличие π-сопряжения, объемных *трет*-бутильных групп и кольцевых карбонильных групп) позволяет предположить, что такие соединения способны проявлять редоксактивные свойства. Что предполагает способность этих соединений выступать в качестве антиоксидантов, красителей для изготовления электрохимических ячеек для «фотовольтаики» и лигандов для синтеза редокс-активных металлокомплексов. В настоящее время ведутся исследования вышеизложенных свойств методами УФспектроскопии, ЦВА, ЭПР-спектроскопии, а также изготовление фотоэлектрических ячеек по методу Гретцеля.

Выводы

- 1. Введение нитро-группы в 6 положение 3,5-ди-(*трет*-бутил)-1,2-бензохинона приводит к активации стерически заблокированного присоединения по типу Михаэля в реакции 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с N-нуклеофилами.
- 2. Реакция 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона с аммиаком и первичными алифатическими и ароматическими аминами протекает как двухстадийный процесс, с присоединением амина по наиболее электрофильному углеродному атому положения 5 и 1,2-миграцией 5-(*трет*-бутильной) группы в соседнее положение 4 шестичленного цикла.
- 3. Со вторичными аминами в изопропаноле реакция протекает иначе: в этом случае наряду с присоединением амина по Михаэлю с последующим сигматропным 1,2 сдвигом *трет*-бутильной группы, реализуется процесс сужения цикла хинона по ANRORC механизму, ведущий к производным циклопента-1,3-диена.
- 4. С 3,4-ди(*трет*-бутил)-2-гидрокси-6-нитро-5-(ариламино)циклогекса-2,5-диенонами 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинон образует продукты электрофильного дезалкилирования, 6-(*трет*-бутил)-4-(ариламино)-3-нитроциклогекса-3,5-диен-1,2-дионы.
- 5. Из этих дионов, посредством ранее неизвестной рециклизации, при обработке ацетоном в изопропаноле могут быть получены ранее неописанные N-замещенные 1H-циклопента[b]пиридин-4,5-дионы.
- 6. Эти 1Н-циклопента[b]пиридин-4,5-дионы могут быть, что гораздо практичнее, получены прямо из 3,5-ди-(*трет*-бутил)-6-нитро-1,2-бензохинона, аминоарена и ацетона, в режиме one-pot-процесса.
- 7. Направление реакции о-фенилендиаминов со стерически затрудненным 3,5-ди(*трет*-бутил)-1,2-бензохиноном существенно зависит от выбранного растворителя и соотношения реагентов. В мягких условиях, при кипячении в изопропаноле и при соотношении реактантов 1:1 образуются производные 10H-хиноксалино[3,2,1-kl]феноксазин-10-она; в тех же условиях, но в толуоле, продуктом реакции

оказывается уже линейно-аннелированный 12H-хиноксалино[2,3-b]феноксазин, а в этом же растворителе, и при соотношения хинон/диамин 2:1 основным продуктом становится 10-членный лактон.

8. Полученные гетерополициклические соединения обладают выраженными редокс-свойствами, и являются привлекательными новыми лигандами для получения бис-хелатных, в том числе, редокс-активных, комплексов переходных металлов.

Список работ, опубликованных по теме диссертации

- 1. An access to 1H-cyclopenta[b]pyridine-4,5-diones via condensation of 6-nitro-1,2-o-quinone with arylamines and acetone / E. Ivakhnenko, **V. Malay**, O. Demidov, A. Starikov, V. Minkin // Tetrahedron. 2022. T. 103. C. 132575. DOI 10.1016/j.tet.2021.132575.
- 2. Michael addition of amines to sterically crowded ortho-benzoquinone completed with unprecedented 1,2-shift of a tert-butyl group / E. Ivakhnenko, **V. Malay**, G. Romanenko, O. Demidov, P. Knyazev, A. Starikov, V. Minkin // Tetrahedron. 2021. T. 79. C. 131841. DOI 10.1016/j.tet.2020.131841
- 3. Ivakhnenko, E. A new heteropentacyclic system via coupling sterically crowded obenzoquinone with o-phenylenediamines / E. Ivakhnenko, **V. Malay**, O. Demidov, P. Knyazev, N. Makarova, V. Minkin // Organic & Biomolecular Chemistry. 2023. T. **21**. C. 621-631. DOI 10.1039/D2OB02165J
- 4. **Малай**, **В.И.** Новые продукты присоединения аминов по Михаэлю к стерически затрудненному орто-бензохинону / **В. И. Малай**, Е.П. Ивахненко // Химия: достижения и перспективы : сборник научных статей по материалам VI Всероссийской научнопрактической конференции студентов и молодых ученых, Ростов-на-Дону, 21-22 мая 2021 года. Ростов-на-Дону ; Таганрог : Издательство Южного федерального университета, 2021. С. 601-603.
- 5. **Малай**, **В.И.** Простой трехкомпонентный синтез производных 1Нциклопента[b]пиридин-4,5-диона / **В. И. Малай**, Е.П. Ивахненко // Химия: достижения и перспективы : сборник научных статей VII Всероссийской научно-практической

- конференции студентов и молодых ученых, посвященной памяти д.х.н. В.В. Лукова. Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2022. С. 568-570.
- 6. Синтез, строение и свойства трехдентатного лиганда на основе хиноксалино[2,3-b]феноксахиновой системы / **В. И. Малай**, Е. П. Ивахненко, О. П. Демидов, Ю. В. Критченко, Н. И. Мережко // Спектроскопия координационных соединений : сборник научных трудов XIX Международной конференции, г. Туапсе, 18-23 сентября 2022 г. Краснодар : Кубанский государственный университет, 2022. С. 170.
- 7. Взаимодействие вторичных аминов с 4,6-ди-*трет*-бутил-3-нитроциклогекса-3,5-диен-1,2-дионом / Н. И. Мережко, **В. И. Малай**, Ю. В. Критченко, Е. П. Ивахненко // Наука Юга России: достижения и перспективы : XVIII Ежегодная молодежная научная конференция (г. Ростов-на-Дону, 18-29 апреля 2022) : тезисы докладов. Ростов-на-Дону : ЮНЦ РАН, 2022. С. 66.
- 8. Взаимодействие аминов с 4,6-ди-*трет*-бутил-3-нитроциклогекса-3,5-диен-1,2-дионом / Н. И. Мережко, **В. И. Малай**, Е. П. Ивахненко, С. Е. Кислицин // Фундаментальные исследования, инновационные технологии и передовые разработки в интересах долгосрочного развития Юга России : материалы Международного научного форума, посвященного 20-летию ЮНЦ РАН (г. Ростов-на-Дону, 8–10 февраля 2023 г.). Ростов-на-Дону : ЮНЦ РАН, 2023. С. 44-45. Режим доступа: https://www.ssc-ras.ru/ckfinder/userfiles/files/Forum2023_sbornik_PRINT.pdf (дата обращения 13.06.2023).